Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Pathogens ; 12(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37623965

ABSTRACT

Mitochondria are critical in numerous cellular processes, including energy generation. Bacterial pathogens target host cell mitochondria through various mechanisms to disturb the host response and improve bacterial survival. We review recent advances in the understanding of how bacteria cause mitochondrial dysfunction through perturbations in mitochondrial cell-death pathways, energy production, mitochondrial dynamics, mitochondrial quality control, DNA repair, and the mitochondrial unfolded protein response. We also briefly highlight possible therapeutic approaches aimed at restoring the host mitochondrial function as a novel strategy to enhance the host response to bacterial infection.

2.
Cells ; 12(15)2023 07 26.
Article in English | MEDLINE | ID: mdl-37566018

ABSTRACT

SARS-CoV-2 infection triggers distinct patterns of disease development characterized by significant alterations in host regulatory responses. Severe cases exhibit profound lung inflammation and systemic repercussions. Remarkably, critically ill patients display a "lipid storm", influencing the inflammatory process and tissue damage. Sphingolipids (SLs) play pivotal roles in various cellular and tissue processes, including inflammation, metabolic disorders, and cancer. In this study, we employed high-resolution mass spectrometry to investigate SL metabolism in plasma samples obtained from control subjects (n = 55), COVID-19 patients (n = 204), and convalescent individuals (n = 77). These data were correlated with inflammatory parameters associated with the clinical severity of COVID-19. Additionally, we utilized RNAseq analysis to examine the gene expression of enzymes involved in the SL pathway. Our analysis revealed the presence of thirty-eight SL species from seven families in the plasma of study participants. The most profound alterations in the SL species profile were observed in patients with severe disease. Notably, a predominant sphingomyelin (SM d18:1) species emerged as a potential biomarker for COVID-19 severity, showing decreased levels in the plasma of convalescent individuals. Elevated SM levels were positively correlated with age, hospitalization duration, clinical score, and neutrophil count, as well as the production of IL-6 and IL-8. Intriguingly, we identified a putative protective effect against disease severity mediated by SM (d18:1/24:0), while ceramide (Cer) species (d18:1/24:1) and (d18:1/24:0)were associated with increased risk. Moreover, we observed the enhanced expression of key enzymes involved in the SL pathway in blood cells from severe COVID-19 patients, suggesting a primary flow towards Cer generation in tandem with SM synthesis. These findings underscore the potential of SM as a prognostic biomarker for COVID-19 and highlight promising pharmacological targets. By targeting sphingolipid pathways, novel therapeutic strategies may emerge to mitigate the severity of COVID-19 and improve patient outcomes.


Subject(s)
COVID-19 , Sphingomyelins , Humans , Prognosis , SARS-CoV-2/metabolism , Ceramides/metabolism , Sphingolipids/metabolism , Biomarkers
3.
FASEB J ; 37(8): e23101, 2023 08.
Article in English | MEDLINE | ID: mdl-37486603

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest and most diverse class of signaling receptors. GPCRs regulate many functions in the human body and have earned the title of "most targeted receptors". About one-third of the commercially available drugs for various diseases target the GPCRs. Fibroblasts lay the architectural skeleton of the body, and play a key role in supporting the growth, maintenance, and repair of almost all tissues by responding to the cellular cues via diverse and intricate GPCR signaling pathways. This review discusses the dynamic architecture of the GPCRs and their intertwined signaling in pathological conditions such as idiopathic pulmonary fibrosis, cardiac fibrosis, pancreatic fibrosis, hepatic fibrosis, and cancer as opposed to the GPCR signaling of fibroblasts in physiological conditions. Understanding the dynamics of GPCR signaling in fibroblasts with disease progression can help in the recognition of the complex interplay of different GPCR subtypes in fibroblast-mediated diseases. This review highlights the importance of designing and adaptation of next-generation strategies such as GPCR-omics, focused target identification, polypharmacology, and effective personalized medicine approaches to achieve better therapeutic outcomes for fibrosis and fibrosis associated malignancies.


Subject(s)
Neoplasms , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Fibroblasts/metabolism , Fibrosis
4.
J Virol ; 97(6): e0005323, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37255470

ABSTRACT

Macrophages can serve as a reservoir for human immunodeficiency-1 (HIV-1) virus in host cells, constituting a barrier to eradication, even in patients who are receiving antiretroviral therapy. Although many noncoding RNAs have been characterized as regulators in HIV-1/AIDS-induced immune response and pathogenesis, only a few long noncoding RNAs (lncRNAs) have demonstrated a close association with HIV-1 replication, and the molecular mechanisms remain unknown. In this study, we investigated how lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), related microRNAs, and key inflammatory genes alter HIV-1 replication in macrophages. Our data show that HIV-1 infection modulates the expression of miR-155 and miR-150-5p in a time-dependent manner, which is regulated by MALAT1. MALAT1 induced suppressor of cytokine signaling 1 (SOCS1) expression by sponging miR-150-5p in HIV-1-infected macrophages and stimulated inflammatory mediators triggering receptor expressed on myeloid cells/cold inducible RNA binding protein (TREM 1/CIRP) ligand/receptor. The RNA immunoprecipitation (RIP) assay validated the direct interaction within the MALAT1/miR-150-5p/SOCS1 axis. HIV-1 infection-mediated upregulation of MALAT1, SOCS1, and HIV-1 Gag was attenuated by SN50 (an NF-кB p50 inhibitor). MALAT1 antisense oligonucleotides (ASOs) suppressed HIV-1 p24 production and HIV-1 Gag gene expression and decreased expression of miR-155 and SOCS1, as well as the production of proinflammatory cytokines by HIV-1-infected macrophages. In conclusion, HIV-1 infection induces MALAT1, which attenuates miR-150-5p expression and increases SOCS1 expression, promoting HIV-1 replication and reactivation. These data provide new insights into how MALAT1 alters the macrophage microenvironment and subsequently promotes viral replication and suggest a potential role for targeting MALAT1 as a therapeutic approach to eliminate HIV-1 reservoirs. IMPORTANCE Viral reservoirs constitute an obstacle to curing HIV-1 diseases, despite antiretroviral therapy. Macrophages serve as viral reservoirs in HIV infection by promoting long-term replication and latency. Recent studies have shown that lncRNAs can modulate virus-host interactions, but the underlying mechanisms are not fully understood. In this study, we demonstrate how lncRNA MALAT1 contributes to HIV-1 replication through modulation of the miR-150/SOCS1 axis in human macrophages. Our findings have the potential to identify new therapies for eliminating HIV-1 reservoirs in immune cells.


Subject(s)
HIV Infections , MicroRNAs , RNA, Long Noncoding , Virus Replication , Humans , HIV Infections/genetics , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , HIV-1/physiology
5.
Pathogens ; 12(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242396

ABSTRACT

Allogeneic stem cell transplantation is a lifesaving treatment for many malignancies. Post-transplant patients may suffer from graft versus host disease in the acute and/or the chronic form(s). Post-transplantation immune deficiency due to a variety of factors is a major cause of morbidity and mortality. Furthermore, immunosuppression can lead to alterations in host factors that predisposes these patients to infections. Although patients who receive stem cell transplant are at an increased risk of opportunistic pathogens, which include fungi and viruses, bacterial infections remain the most common cause of morbidity. Here, we review bacterial pathogens that lead to pneumonias specifically in the chronic GVHD population.

6.
Pathogens ; 12(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36986386

ABSTRACT

There are about 200 different types of interstitial lung disease (ILD), and a crucial initial step in the assessment of a patient with suspected ILD is achieving an appropriate diagnosis. Some ILDs respond to immunosuppressive agents, while immunosuppression can be detrimental in others, hence treatment is based on the most confident diagnosis with consideration of a patient's risk factors. Immunosuppressive medications have the potential to result in substantial, and perhaps life-threatening, bacterial infections to a patient. However, data on the risk of bacterial infections from immunosuppressive treatment specifically in patients with interstitial lung disease is lacking. We hereby review the immunosuppressive treatments used in ILD patients excluding sarcoidosis, highlight their risk of bacterial infections, and discuss the potential mechanisms that contribute to the increased risk of infections.

7.
Lancet Infect Dis ; 23(4): 484-495, 2023 04.
Article in English | MEDLINE | ID: mdl-36525985

ABSTRACT

BACKGROUND: Lower respiratory tract infections are frequently treated with antibiotics, despite a viral cause in many cases. It remains unknown whether low procalcitonin concentrations can identify patients with lower respiratory tract infection who are unlikely to benefit from antibiotics. We aimed to compare the efficacy and safety of azithromycin versus placebo to treat lower respiratory tract infections in patients with low procalcitonin. METHODS: We conducted a randomised, placebo-controlled, double-blind, non-inferiority trial at five health centres in the USA. Adults aged 18 years or older with clinically suspected non-pneumonia lower respiratory tract infection and symptom duration from 24 h to 28 days were eligible for enrolment. Participants with a procalcitonin concentration of 0·25 ng/mL or less were randomly assigned (1:1), in blocks of four with stratification by site, to receive over-encapsulated oral azithromycin 250 mg or matching placebo (two capsules on day 1 followed by one capsule daily for 4 days). Participants, non-study clinical providers, investigators, and study coordinators were masked to treatment allocation. The primary outcome was efficacy of azithromycin versus placebo in terms of clinical improvement at day 5 in the intention-to-treat population. The non-inferiority margin was -12·5%. Solicited adverse events (abdominal pain, vomiting, diarrhoea, allergic reaction, or yeast infections) were recorded as a secondary outcome. This trial is registered with ClinicalTrials.gov, NCT03341273. FINDINGS: Between Dec 8, 2017, and March 9, 2020, 691 patients were assessed for eligibility and 499 were enrolled and randomly assigned to receive azithromycin (n=249) or placebo (n=250). Clinical improvement at day 5 was observed in 148 (63%, 95% CI 54 to 71) of 238 participants with full data in the placebo group and 155 (69%, 61 to 77) of 227 participants with full data in the azithromycin group in the intention-to-treat analysis (between-group difference -6%, 95% CI -15 to 2). The 95% CI for the difference did not meet the non-inferiority margin. Solicited adverse events and the severity of solicited adverse events were not significantly different between groups at day 5, except for increased abdominal pain associated with azithromycin (47 [23%, 95% CI 18 to 29] of 204 participants) compared with placebo (35 [16%, 12 to 21] of 221; between-group difference -7% [95% CI -15 to 0]; p=0·066). INTERPRETATION: Placebo was not non-inferior to azithromycin in terms of clinical improvement at day 5 in adults with lower respiratory tract infection and a low procalcitonin concentration. After accounting for both the rates of clinical improvement and solicited adverse events at day 5, it is unclear whether antibiotics are indicated for patients with lower respiratory tract infection and a low procalcitonin concentration. FUNDING: National Institute of Allergy and Infectious Diseases, bioMérieux.


Subject(s)
Azithromycin , Respiratory Tract Infections , Adult , Humans , Azithromycin/adverse effects , Procalcitonin , Anti-Bacterial Agents/adverse effects , Respiratory Tract Infections/drug therapy , Double-Blind Method , Treatment Outcome
8.
Pulm Circ ; 12(1): e12043, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35506072

ABSTRACT

Treating Veterans with chronic obstructive pulmonary disease complicated by pulmonary hypertension (COPD-PH) using phosphodiesterase type-5 inhibitor pharmacotherapy is common, but efficacy data are lacking. To address this further, patients with COPD-PH from five Department of Veterans Affairs hospitals were randomized (1∶1) to receive placebo or oral tadalafil (40 mg/day) for 12 months. The primary endpoint was changed from baseline in 6-min walk distance at 12 months. Secondary endpoints included change from baseline in pulmonary vascular resistance, mean pulmonary artery pressure, and symptom burden by the University of California San Diego shortness of breath questionnaire scale at 6 months. A total of 42 subjects (all male; 68 ± 7.6 years old) were randomized to placebo (N = 14) or tadalafil (N = 28). The group imbalance was related to under-enrollment. Compared to placebo, no significant difference was observed in the tadalafil group for change from the primary endpoint or change in mean pulmonary artery pressure or pulmonary vascular resistance from baseline at 6 months. A clinically meaningful improvement was observed in the secondary endpoint of shortness of breath questionnaire score in the tadalafil versus placebo group at 6 months. There was no significant difference in major adverse events between treatment groups, and tadalafil was well tolerated overall. For Veterans with COPD-PH enrolled in this study, once-daily treatment with tadalafil did not improve 6-min walk distance or cardiopulmonary hemodynamics although a decrease in shortness of breath was observed. Under-enrollment and imbalanced randomization confound interpreting conclusions from this clinical trial and limit the generalization of our findings.

9.
Pathogens ; 11(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35215060

ABSTRACT

The innate immune response to P. aeruginosa pulmonary infections relies on a network of pattern recognition receptors, including intracellular inflammasome complexes, which can recognize both pathogen- and host-derived signals and subsequently promote downstream inflammatory signaling. Current evidence suggests that the inflammasome does not contribute to bacterial clearance and, in fact, that dysregulated inflammasome activation is harmful in acute and chronic P. aeruginosa lung infection. Given the role of mitochondrial damage signals in recruiting inflammasome signaling, we investigated whether mitochondrial-targeted therapies could attenuate inflammasome signaling in response to P. aeruginosa and decrease pathogenicity of infection. In particular, we investigated the small molecule, ZLN005, which transcriptionally activates peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, antioxidant defense, and cellular respiration. We demonstrate that P. aeruginosa infection promotes the expression of inflammasome components and attenuates several components of mitochondrial repair pathways in vitro in lung epithelial cells and in vivo in an acute pneumonia model. ZLN005 activates PGC-1α and its downstream effector, Sirtuin 3 (SIRT3), a mitochondrial-localized deacetylase important for cellular metabolic processes and for reactive oxygen species homeostasis. ZLN005 also attenuates inflammasome signaling induced by P. aeruginosa in bronchial epithelial cells and this action is dependent on ZLN005 activation of SIRT3. ZLN005 treatment reduces epithelial-barrier dysfunction caused by P. aeruginosa and decreases pathogenicity in an in vivo pneumonia model. Therapies that activate the PGC-1α-SIRT3 axis may provide a complementary approach in the treatment of P. aeruginosa infection.

10.
Am J Med Sci ; 364(1): 53-58, 2022 07.
Article in English | MEDLINE | ID: mdl-35077701

ABSTRACT

BACKGROUND: Sepsis is one of the leading causes of hospital mortality, and diabetes is a risk factor for the development of infections. Although strong evidence has shown an association between metformin and reduced risk of infections, the risk of developing infections with newer classes of oral anti-diabetic drugs (OADs) has been less certain. Our study aims to examine the association between outpatient OAD use and hospital admissions for infections. METHODS: The study cohort included 1.39 million adults with diabetes utilizing the Veterans Health Affairs Corporate Data Warehouse. Multivariate logistic regression was used to estimate the effect of each drug class on hospital admission for infection while adjusting for covariates. RESULTS: After adjusting for covariates, those who took metformin during the study period had 3.3% lower odds of hospital admission for infection compared to those who were never on metformin (OR 0.97, 95% CI 0.95-0.98). OADs that were associated with a statistically significant increased odds of being admitted included meglitinides (OR 1.22, 95% CI 1.07-1.38), SGLT2 inhibitors (OR 1.16, 95% CI 1.08-1.24), alpha-glucosidase inhibitors (OR 1.09, 95% CI 1.04-1.15), and DPP4 inhibitors (OR 1.04, 95% CI 1.01-1.06). CONCLUSIONS: Metformin was associated with lower odds of hospital admission for infection while meglitinides, SGLT2 inhibitors, alpha-glucosidase inhibitors, and DPP4 inhibitors were associated with higher odds of admission for infection.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Dipeptidyl-Peptidase IV Inhibitors , Metformin , Sodium-Glucose Transporter 2 Inhibitors , Adult , Diabetes Mellitus, Type 2/drug therapy , Hospitals , Humans , Hypoglycemic Agents/therapeutic use , Intensive Care Units , Metformin/therapeutic use
11.
Viruses ; 13(12)2021 12 15.
Article in English | MEDLINE | ID: mdl-34960790

ABSTRACT

Uncontrolled inflammatory responses play a critical role in coronavirus disease (COVID-19). In this context, because the triggering-receptor expressed on myeloid cells-1 (TREM-1) is considered an intrinsic amplifier of inflammatory signals, this study investigated the role of soluble TREM-1 (sTREM-1) as a biomarker of the severity and mortality of COVID-19. Based on their clinical scores, we enrolled COVID-19 positive patients (n = 237) classified into mild, moderate, severe, and critical groups. Clinical data and patient characteristics were obtained from medical records, and their plasma inflammatory mediator profiles were evaluated with immunoassays. Plasma levels of sTREM-1 were significantly higher among patients with severe disease compared to all other groups. Additionally, levels of sTREM-1 showed a significant positive correlation with other inflammatory parameters, such as IL-6, IL-10, IL-8, and neutrophil counts, and a significant negative correlation was observed with lymphocyte counts. Most interestingly, sTREM-1 was found to be a strong predictive biomarker of the severity of COVID-19 and was related to the worst outcome and death. Systemic levels of sTREM-1 were significantly correlated with the expression of matrix metalloproteinases (MMP)-8, which can release TREM-1 from the surface of peripheral blood cells. Our findings indicated that quantification of sTREM-1 could be used as a predictive tool for disease outcome, thus improving the timing of clinical and pharmacological interventions in patients with COVID-19.


Subject(s)
Biomarkers/blood , COVID-19/diagnosis , COVID-19/mortality , Leukocytes/metabolism , Matrix Metalloproteinase 8/metabolism , Severity of Illness Index , Triggering Receptor Expressed on Myeloid Cells-1/blood , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Female , Humans , Inflammation , Interleukin-10/blood , Interleukin-6/blood , Interleukin-8/blood , Leukocyte Count , Male , Middle Aged , Neutrophils/metabolism , Prospective Studies , SARS-CoV-2 , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Young Adult
12.
Pathogens ; 10(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34451384

ABSTRACT

Non-tuberculous mycobacteria (NTM) have been recognized as a causative agent of various human diseases, including severe infections in immunocompromised patients, such as people living with HIV. The most common species identified is the Mycobacterium avium-intracellulare complex (MAI/MAC), accounting for a majority of infections. Despite abundant information detailing the clinical significance of NTM, little is known about host-pathogen interactions in NTM infection. MicroRNAs (miRs) serve as important post-transcriptional regulators of gene expression. Using a microarray profile, we found that the expression of miR-155 and cyclo-oxygenase 2 (COX-2) is significantly increased in bone-marrow-derived macrophages from mice and human monocyte-derived macrophages from healthy volunteers that are infected with NTM. Antagomir against miR-155 effectively suppressed expression of COX-2 and reduced Prostaglandin E2(PGE2) secretion, suggesting that COX-2/PGE2 expression is dependent on miR-155. Mechanistically, we found that inhibition of NF-κB activity significantly reduced miR-155/COX-2 expression in infected macrophages. Most importantly, blockade of COX-2, E-prostanoid receptors (EP2 and EP4) enhanced killing of MAI in macrophages. These findings provide novel mechanistic insights into the role of miR-155/COX-2/PGE2 signalling and suggest that induction of these pathways enhances survival of mycobacteria in macrophages. Defining host-pathogen interactions can lead to novel immunomodulatory therapies for NTM infections which are difficult to treat.

13.
Clin Sci (Lond) ; 134(14): 1911-1934, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32537652

ABSTRACT

Cystic fibrosis (CF) is a progressive multiorgan autosomal recessive disease with devastating impact on the lungs caused by derangements of the CF transmembrane conductance regulator (CFTR) gene. Morbidity and mortality are caused by the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Pseudomonas aeruginosa is the main respiratory pathogen in individuals with CF infecting most patients in later stages. Despite its recognized clinical impact, molecular mechanisms that underlie P. aeruginosa pathogenesis and the host response to P. aeruginosa infection remain incompletely understood. The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) γ (PPARγ), has shown to be reduced in CF airways. In the present study, we sought to investigate the upstream mechanisms repressing PPARγ expression and its impact on airway epithelial host defense. Endoplasmic reticulum-stress (ER-stress) triggered unfolded protein response (UPR) activated by misfolded CFTR and P. aeruginosa infection contributed to attenuated expression of PPARγ. Specifically, the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway led to the enhanced expression of the CCAAT-enhancer-binding-protein homologous protein (CHOP). CHOP induction led to the repression of PPARγ expression. Mechanistically, we showed that CHOP induction mediated PPARγ attenuation, impacted the innate immune function of normal and ∆F508 primary airway epithelial cells by reducing expression of antimicrobial peptide (AMP) and paraoxanse-2 (PON-2), as well as enhancing IL-8 expression. Furthermore, mitochondrial reactive oxygen species production (mt-ROS) and ER-stress positive feedforward loop also dysregulated mitochondrial bioenergetics. Additionally, our findings implicate that PPARγ agonist pioglitazone (PIO) has beneficial effect on the host at the multicellular level ranging from host defense to mitochondrial re-energization.


Subject(s)
Cystic Fibrosis/metabolism , PPAR gamma/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/physiology , Unfolded Protein Response , A549 Cells , Aryldialkylphosphatase/metabolism , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Endoplasmic Reticulum Stress , Epithelial Cells/metabolism , Host-Pathogen Interactions , Humans , Immunity, Innate , Interleukin-8/metabolism , Mitochondria/metabolism , PPAR gamma/agonists , Pioglitazone , Pseudomonas Infections/immunology , Transcription Factor CHOP/metabolism , beta-Defensins/metabolism
14.
Am J Respir Cell Mol Biol ; 63(2): 144-151, 2020 08.
Article in English | MEDLINE | ID: mdl-32160017

ABSTRACT

The incidence and prevalence of nontuberculous mycobacteria (NTM) lung disease is rising worldwide and accounts for most clinical cases of NTM disease. NTM infections occur in both immunocompetent and immunocompromised hosts. Macrophages are the primary host cells that initiate an immune response to NTM. Defining the molecular events that govern the control of infection within macrophages is fundamental to understanding the pathogenesis of NTM disease. Here, we review key macrophage host signaling pathways that contribute to the host immune response to pulmonary NTM infections. In this review, we focus primarily on NTM that are known to cause lung disease, including Mycobacterium avium intracellulare, M. abscessus, and M. kansasii.


Subject(s)
Lung Diseases/metabolism , Macrophages/metabolism , Mycobacterium Infections, Nontuberculous/metabolism , Nontuberculous Mycobacteria/pathogenicity , Signal Transduction/physiology , Animals , Humans , Lung Diseases/microbiology , Mycobacterium Infections, Nontuberculous/microbiology
15.
J Neuroinflammation ; 16(1): 241, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31779628

ABSTRACT

BACKGROUND: Sepsis-associated encephalopathy (SAE), a diffuse cerebral dysfunction in the absence of direct CNS infection, is associated with increased rates of mortality and morbidity in patients with sepsis. Increased cytokine production and disruption of the blood-brain barrier (BBB) are implicated in the pathogenesis of SAE. The induction of pro-inflammatory mediators is driven, in part, by activation of NF-κΒ. Lipopolysaccharide (LPS), an endotoxin produced by gram-negative bacteria, potently activates NF-κΒ and its downstream targets, including cyclooxygenase-2 (Cox-2). Cox-2 catalyzes prostaglandin synthesis and in the brain prostaglandin, E2 is capable of inducing endothelial permeability. Depletion of polymerase δ-interacting protein 2 (Poldip2) has previously been reported to attenuate BBB disruption, possibly via regulation of NF-κΒ, in response to ischemic stroke. Here we investigated Poldip2 as a novel regulator of NF-κΒ/cyclooxygenase-2 signaling in an LPS model of SAE. METHODS: Intraperitoneal injections of LPS (18 mg/kg) were used to induce BBB disruption in Poldip2+/+ and Poldip2+/- mice. Changes in cerebral vascular permeability and the effect of meloxicam, a selective Cox-2 inhibitor, were assessed by Evans blue dye extravasation. Cerebral cortices of Poldip2+/+ and Poldip2+/- mice were further evaluated by immunoblotting and ELISA. To investigate the role of endothelial Poldip2, immunofluorescence microscopy and immunoblotting were performed to study the effect of siPoldip2 on LPS-mediated NF-κΒ subunit p65 translocation and Cox-2 induction in rat brain microvascular endothelial cells. Finally, FITC-dextran transwell assay was used to assess the effect of siPoldip2 on LPS-induced endothelial permeability. RESULTS: Heterozygous deletion of Poldip2 conferred protection against LPS-induced BBB permeability. Alterations in Poldip2+/+ BBB integrity were preceded by induction of Poldip2, p65, and Cox-2, which was not observed in Poldip2+/- mice. Consistent with these findings, prostaglandin E2 levels were significantly elevated in Poldip2+/+ cerebral cortices compared to Poldip2+/- cortices. Treatment with meloxicam attenuated LPS-induced BBB permeability in Poldip2+/+ mice, while having no significant effect in Poldip2+/- mice. Moreover, silencing of Poldip2 in vitro blocked LPS-induced p65 nuclear translocation, Cox-2 expression, and endothelial permeability. CONCLUSIONS: These data suggest Poldip2 mediates LPS-induced BBB disruption by regulating NF-κΒ subunit p65 activation and Cox-2 and prostaglandin E2 induction. Consequently, targeted inhibition of Poldip2 may provide clinical benefit in the prevention of sepsis-induced BBB disruption.


Subject(s)
Blood-Brain Barrier/metabolism , Mitochondrial Proteins/metabolism , Nuclear Proteins/metabolism , Sepsis-Associated Encephalopathy/metabolism , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Capillary Permeability/drug effects , Capillary Permeability/physiology , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , NF-kappa B/metabolism , Nuclear Proteins/genetics , Permeability , Sepsis-Associated Encephalopathy/genetics , Sepsis-Associated Encephalopathy/pathology
16.
Cell Death Dis ; 10(8): 580, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31371699

ABSTRACT

Antiretroviral therapy extends survival but does not eliminate HIV from its cellular reservoirs. Between immune and stromal cells in the tissue microenvironment, a dynamic intercellular communication might influence host viral immune responses via intercellular transfer of extracellular vehicles (EVs) (microvesicles, exosome, or apoptotic bodies). It is increasingly recognized that HIV-infected macrophage-secreted nucleotide-rich exosomes might play a critical role in mediating communication between macrophages and other structural cells; however, molecular mechanisms underlying cell-cell crosstalk remain unknown. Here we show that HIV-1-infected macrophages and HIV-1 proteins Tat or gp120-treated macrophages express high levels of microRNAs, including miR-23a and miR-27a. Identical miRNAs expression patterns were detected in macrophage-secreted exosomes isolated from bronchoalveolar lavage fluid of HIV transgenic rats. Tat-treated macrophage-derived exosomal miR-23a attenuated posttranscriptional modulation of key tight junction protein zonula occludens (ZO-1) 3'-UTR in epithelial cells. In parallel, exosomal miR-27a released from Tat-treated macrophages altered the mitochondrial bioenergetics of recipient lung epithelial cells by targeting peroxisome proliferator-activated receptor gamma (PPARγ), while simultaneously stimulating glycolysis. Together, exosomal miRNAs shuttle from macrophages to epithelial cells and thereby explain in part HIV-mediated lung epithelial barrier dysfunction. These studies suggest that targeting miRNAs may be of therapeutic value to enhance lung health in HIV.


Subject(s)
Lung/metabolism , MicroRNAs/genetics , Mitochondria/metabolism , Cell Movement/drug effects , Energy Metabolism/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/virology , Extracellular Vesicles/genetics , Glycolysis/genetics , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/pharmacology , HIV-1/genetics , HIV-1/pathogenicity , Humans , Lung/pathology , Lung/virology , Macrophages/metabolism , Macrophages/pathology , Macrophages/virology , Mitochondria/pathology , Mitochondria/virology , PPAR gamma/genetics , Zonula Occludens-1 Protein/genetics , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/pharmacology
17.
Sci Rep ; 9(1): 11929, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31417101

ABSTRACT

The pathogenicity of P. aeruginosa is dependent on quorum sensing (QS), an inter-bacterial communication system that can also modulate host biology. The innate immune function of the lung mucosal barrier is dependent on proper mitochondrial function. The purpose of this study was to define the mechanism by which bacterial factors modulate host lung epithelial cell mitochondrial function and to investigate novel therapies that ameliorate this effect. 3-oxo-C12-HSL disrupts mitochondrial morphology, attenuates mitochondrial bioenergetics, and induces mitochondrial DNA oxidative injury. Mechanistically, we show that 3-oxo-C12-HSL attenuates expression of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, antioxidant defense, and cellular respiration, and its downstream effectors in both BEAS-2B and primary lung epithelial cells. Overexpression of PGC-1α attenuates the inhibition in cellular respiration caused by 3-oxo-C12-HSL. Pharmacologic activation of PGC-1α restores barrier integrity in cells treated with 3-oxo-C12-HSL. These data demonstrate that the P. aeruginosa QS molecule, 3-oxo-C12-HSL, alters mitochondrial pathways critical for lung mucosal immunity. Genetic and pharmacologic strategies that activate the PGC-1α pathway enhance host epithelial cell mitochondrial function and improve the epithelial innate response to P. aeruginosa. Therapies that rescue PGC-1α function may provide a complementary approach in the treatment of P. aeruginosa infection.


Subject(s)
Epithelial Cells/microbiology , Host-Pathogen Interactions , Mitochondria/pathology , Pseudomonas aeruginosa/physiology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Apoptosis/drug effects , Bronchi/pathology , Cell Line , Cell Respiration/drug effects , DNA Damage , DNA, Mitochondrial/genetics , Epithelial Cells/drug effects , Epithelial Cells/ultrastructure , Homoserine/analogs & derivatives , Homoserine/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Metformin/pharmacology , Mitochondria/drug effects , Models, Biological , Organelle Biogenesis , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Reactive Oxygen Species/metabolism , Resveratrol/pharmacology
18.
Alcohol ; 80: 65-72, 2019 11.
Article in English | MEDLINE | ID: mdl-31307864

ABSTRACT

Excessive alcohol users have a higher risk for developing respiratory infections compared to individuals who do not chronically misuse alcohol, due to impaired host immune defense. In the lung, alveolar epithelial cells play a critical role in host immune defense against invading pathogens in the lower respiratory tract due to their capacity to maintain barrier integrity, and alveolar macrophages play a key role in pulmonary innate immunity by phagocytizing and clearing infiltrating microbes. Chronic alcohol misuse induces mitochondrial damage that results in release of mitochondrial DNA (mtDNA) in exosomes. We hypothesized that alcohol-induced cellular damage leads to release of exosomes containing damaged mtDNA, which can mediate injurious crosstalk between lung epithelial cells and macrophages. The mouse alveolar epithelial cell line, MLE-12, and the mouse alveolar macrophage cell line, MH-S, were transfected with a damaged mtDNA overexpression plasmid or exposed to ethanol in vitro. Overexpression of damaged mtDNA impaired MLE-12 barrier function and MH-S phagocytic capacity. Ethanol induced damage of mtDNA in MLE-12 and MH-S cells, and promoted release of exosomes enriched with damaged mtDNA from these cells. Exosomes from ethanol-exposed MH-S cells caused mtDNA damage and barrier dysfunction in MLE-12 cells, and exosomes from ethanol-exposed MLE-12 cells caused mtDNA damage and phagocytic dysfunction in MH-S cells. Collectively, these data show that ethanol-induced mtDNA damage in MLE-12 and MH-S cells stimulates release of damaged mtDNA-enriched exosomes and contributes to injurious crosstalk between the alveolar epithelium and macrophages, potentially leading to impaired host immune defense against respiratory infections.


Subject(s)
DNA Damage/drug effects , DNA, Mitochondrial/drug effects , Ethanol/adverse effects , Macrophages, Alveolar/drug effects , Pulmonary Alveoli/drug effects , Respiratory Mucosa/drug effects , Animals , Cell Line , Macrophages, Alveolar/metabolism , Mice , Phagocytosis/drug effects , Pulmonary Alveoli/metabolism , Respiratory Mucosa/metabolism
19.
Clin Sci (Lond) ; 133(2): 321-334, 2019 01 31.
Article in English | MEDLINE | ID: mdl-30622219

ABSTRACT

Acute respiratory distress syndrome (ARDS) in a deadly disease that can be brought on by endotoxins such as lipopolysaccharide (LPS). ARDS is characterized by vascular permeability, a severe inflammatory response, lung leukocyte infiltration, and resultant lung edema. Polymerase δ-interacting protein 2 (Poldip2) is a novel regulator of blood-brain barrier permeability; however, its role in regulating lung permeability and vascular inflammation is unknown. Here, the role of Poldip2 in regulating vascular permeability and inflammation in a mouse model of ARDS was assessed. Heterozygous deletion of Poldip2 was found to reduce LPS-induced mortality within 20 h, lung inflammatory signaling, and leukocyte infiltration. Moreover, reduced Poldip2-suppressed LP-induced vascular cell adhesion molecule (VCAM)-1 induction, leukocyte recruitment, and mitochondrial reactive oxygen species (ROS) production in vitro These data indicate that Poldip2 is an important regulator of the debilitating consequences of ARDS, potentially through the regulation of mitochondrial ROS-induced inflammatory signaling. Consequently, inhibition of Poldip2 may be a viable option for therapeutic discovery moving forward.


Subject(s)
Capillary Permeability , Endothelial Cells/metabolism , Lung/blood supply , Mitochondrial Proteins/deficiency , Nuclear Proteins/deficiency , Pulmonary Edema/prevention & control , Respiratory Distress Syndrome/metabolism , Vasculitis/prevention & control , Animals , Cell Adhesion , Coculture Techniques , Cytokines/metabolism , Disease Models, Animal , Endothelial Cells/pathology , Female , Humans , Leukocytes/metabolism , Leukocytes/pathology , Male , Mice, Inbred C57BL , Mitochondrial Proteins/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pulmonary Edema/genetics , Pulmonary Edema/metabolism , Pulmonary Edema/pathology , Reactive Oxygen Species/metabolism , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/pathology , Signal Transduction , THP-1 Cells , Vascular Cell Adhesion Molecule-1/metabolism , Vasculitis/genetics , Vasculitis/metabolism , Vasculitis/pathology
20.
Respir Physiol Neurobiol ; 260: 82-94, 2019 02.
Article in English | MEDLINE | ID: mdl-30445230

ABSTRACT

Part of the effective prediction of the pharmacokinetics of drugs (or toxic particles) requires extrapolation of experimental data sets from animal studies to humans. As the respiratory tracts of rodents and humans are anatomically very different, there is a need to study airflow and drug-aerosol deposition patterns in lung airways of these laboratory animals and compare them to those of human lungs. As a first step, interspecies computational comparison modeling of inhaled nano-to-micron size drugs (50 nm < d<15µm) was performed using mouse and human upper airway models under realistic breathing conditions. Critical species-specific differences in lung physiology of the upper airways and subsequently in local drug deposition were simulated and analyzed. In addition, a hybrid modeling methodology, combining Computational Fluid-Particle Dynamics (CF-PD) simulations with deterministic lung deposition models, was developed and predicted total and regional drug-aerosol depositions in lung airways of both mouse and man were compared, accounting for the geometric, kinematic and dynamic differences. Interestingly, our results indicate that the total particle deposition fractions, especially for submicron particles, are comparable in rodent and human respiratory models for corresponding breathing conditions. However, care must be taken when extrapolating a given dosage as considerable differences were noted in the regional particle deposition pattern. Combined with the deposition model, the particle retention and clearance kinetics of deposited nanoparticles indicates that the clearance rate from the mouse lung is higher than that in the human lung. In summary, the presented computer simulation models provide detailed fluid-particle dynamics results for upper lung airways of representative human and mouse models with a comparative analysis of particle lung deposition data, including a novel mice-to-men correlation as well as a particle-clearance analysis both useful for pharmacokinetic and toxicokinetic studies.


Subject(s)
Administration, Inhalation , Aerosols/administration & dosage , Computer Simulation , Hydrodynamics , Lung/physiology , Models, Biological , Pulmonary Ventilation/physiology , Animals , Female , Humans , Lung/anatomy & histology , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...